Water

Profilbild Schröder
Faculty of Mathematics and Natural Sciences
Department of Geography

Geography of Soils and Quarternary Morphology

Share Profile Link
Profile link copied.
Profil Link teilen
Profil Link wurde kopiert.
Expertise

Prof. Schröder’s and his team’s research is focused on the non-destructive method of x-ray powder diffractometry to identify and characterise minerals. Subsequently, the powder samples can be analysed by other methods. The method of x-ray powder diffractometry and its content is closely related to the field of mineralogy and crystallography. Therefore, the method is used in materials research and building materials science. The team is working towards an implementation of the method in continuing and adult education, teaching and learning approaches. Materials suitable for x-ray powder diffractometry: Building materials, concrete, mortar, cement, fine and heavy ceramics, rocks, ores, sediments, ash, dust, filter and combustion residues. Potential fields of applications are: Clay mineralogical investigations (soil science - agriculture), archaeometric investigations (ancient colours and paints, bronze patina and archaeological ceramics), identification of unknown crystalline substances (fingerprinting), identification of crystalline phases, qualitative and semi-quantitative analyses of mixtures, isomorphisms, polymorphisms, determination of amorphous and crystalline states as well as state of crystallisation and particle sizes. The analysis is conducted with powder on a matrix < 32 µm and with texture specimen on a matrix < 2 µm.

Scientific Services
  • diffractometer “XRD 3003 Theta/Theta” (by Seifert) with the copper anode, qualitative mineral analysis and semi-quantitative phase analysis using the Rietveld-method
  • full qualitative mineral analysis and semi-quantitative phase identification using the Rietveld method
  • spectrometer “iCAP 6000” (by Thermo Scientific)
  • multi-element analysis
  • element determination using the ICP-OES acc. to DIN 38406-22
  • determination of the ignition loss
  • measuring of the pH value, the carbonate level, determination of iron soluble in oxalate solution and water content acc. to DIN 19683-4 in the soil
  • determination of the exchange capacity of the soil and replaceable cations acc. to DIN 19684-8
  • determination the composition of grain sizes by sieving acc. to DIN 19683-1, preparation with pyrophosphate of soda acc. to DIN 19683-1 and by laser diffraction
MEHR ANZEIGEN
Profilbild Schmidt
Faculty of Life Sciences
Albrecht Daniel Thaer-Institute of Agricultural and Horticultural Sciences

Department of Crop and Animal Sciences, Biosystems Engineering

Share Profile Link
Profile link copied.
Profil Link teilen
Profil Link wurde kopiert.
Company testimonials

G.F. Schreinzer Positronik, Steinbeis GmbH & Co. KG, Steinbeis GmbH & Co. KG, Pronova Analysentechnik GmbH & Co. KG, newtec Umwelt­technik GmbH

Expertise

Biosystems engineering works at the interface between engineering and biological production processes. Prof. Schmidt and his team develop engineering solutions for a sustainable agricultural production of crops and other environmental friendly technologies. Prof. Schmidt’s research thus leads to innovative plant farming methods in greenhouses, outdoors and other intensive crop farming systems. Alternative energy supply systems (low energy greenhouses) and closed material cycles for intensive crop farming (water hygiene, sensor systems and algorithms for fully automated nutrient solution supply in closed cycles) are Prof. Schmidt’s research area. His main activity herein is the development of sensors for gas analyses, climate measurement technology and that of software supporting decision making in automation systems. Moreover, the team also provides energetic assessments in complete production systems and parts thereof as well as process analyses.

Scientific Services
  • Experimental greenhouses with energy and material flow analytics, CO2 enrichment, artificial lights and fog systems
  • Plant monitors for continuous measurement of photosynthesis, transpiration, tissue temperature, stomatal conductance, climate measurement, gas analyses (Co2, ethylene), soil moisture sensors
  • Freely programmable automation system for climate and process control in greenhouses
Testimonials
  • G.F. Schreinzer Positronik, Steinbeis GmbH & Co. KG: Development of an automation system for greenhouses based on measurement details of plants (Phytocontrol)
  • Steinbeis GmbH & Co. KG: National collaborative research project „The Low Energy Greenhouse“ („Zukunftsinitiative Niederigenergiegewächshaus“, ZINEG)
  • Pronova Analysentechnik GmbH & Co. KG: Development of ionselective sensors for continuous recording of ion proportion in circulating nutrient solution systems; Development of measuring device to analyse phytometric reactions in plants
  • newtec Umwelt­technik GmbH: Development of re-circulating irrigation system with reduced phytosanitary risk in greenhouses
MEHR ANZEIGEN